

High Energy Muon Beams for HEP: R&D Towards World-Leading Intensity and Energy Frontier Physics Capabilities

BNL Frontier Capability Workshop

Mark Palmer April 17, 2013

The Aims of the Muon Accelerator Program

Muon accelerator R&D is focused on developing a facility that can address critical questions spanning two frontiers...

The Intensity Frontier

with a **Neutrino Factory** producing well-characterized v beams for precise high sensitivity studies

The Energy Frontier:

with a *Muon Collider* capable of reaching multi-TeV CoM energies and a *Higgs Factory* on the border between these Frontiers

The unique potential of a facility based on muon accelerators is physics reach that <u>SPANS 2 FRONTIERS</u>

Outline

- Physics Motivations ⇒
 Neutrino Factories and Muon Colliders
- R&D Challenges
- Muon Accelerator Staging
 - Staging Scenarios
 - The Proposed Timeline
 - Parameters
- Concluding Remarks

THE PHYSICS MOTIVATIONS

The Physics Motivations

- μ an elementary charged lepton:
 - 200 times heavier than the electron
 - 2.2 μs lifetime at rest
- Physics potential for the HEP community using muon beams
 - Tests of Lepton Flavor Violation
 - Anomalous magnetic moment ⇒ hints of new physics (g-2)
 - Can provide equal fractions of electron and muon neutrinos at high intensity for studies of neutrino oscillations – the *Neutrino Factory* concept

Offers a large coupling to the "Higgs mechanism"

$$\sim \left(\frac{m_{\mu}^2}{m_e^2}\right) \cong 4 \times 10^4$$

 As with an e⁺e⁻ collider, a μ⁺μ⁻ Collider would offer a precision probe of fundamental interactions – in contrast to hadron colliders

Muon Accelerator Physics

Arogram

- Large muon mass strongly suppresses synchrotron radiation
 - Muons can be accelerated and stored using rings at much higher energy than electrons
 - Colliding beams can be of higher quality with reduced beamstrahlung

- Short muon lifetime has impacts as well
 - Acceleration and storage time of a muon beam is limited
 - Collider ⇒ a new class of decay backgrounds must be dealt with
- Precision beam energy measurement by g-2 allows precision Higgs width determination
- Muon beams produced as tertiary beams:

$$p \rightarrow \pi \rightarrow \mu$$

The Physics Needs: Neutrinos (I)

In the neutrino sector it is critical to understand:

$$-\delta_{\mathsf{CP}}$$

- The mass hierarchy
- $-\theta_{23} = \pi/4, \ \theta_{23} < \pi/4$ or $\theta_{23} > \pi/4$

- Resolve the LSND and other short baseline experimental anomalies [perhaps using beams from a muon storage ring (vSTORM) in a short baseline experiment]
- And continue to probe for signs new physics

The Physics Needs: Neutrinos (II)

CP violation physics reach of various facilities

Can we probe the CP violation in the neutrino sector at the same level as in the CKM Matrix?

0.025 IDS-NF: 700kW target, no cooling, 2×10⁸ s running time 10-15 kTon detector

P. Coloma, P. Huber, J. Kopp, W. Winter – article in preparation

The Physics Needs: Colliders

- μ+μ- Collider:
 - Center of Mass energy: 1.5 6 TeV (3 Tev)
 - Luminosity > 10^{34} cm⁻² sec⁻¹ (350 fb⁻¹/yr)
 - Compact facility
 - 3 TeV ring circumference 3.8 km
 - 2 Detectors
 - Superb Energy Resolution
 - MC: 95% luminosity in dE/E ~ 0.1%
 - CLIC: 35% luminosity in dE/E ~ 1%

Muon Collider Reach

- For √s < 500 GeV
 - SM thresholds: Z⁰h ,W⁺W⁻, top pairs
 - Higgs factory (√s≈ 126 GeV) ✓
- For √s > 500 GeV
 - Sensitive to possible Beyond SM physics.
 - High luminosity required. 🗸
 - Cross sections for central ($|\theta| > 10^{\circ}$) pair production ~ R × 86.8 fb/s(in TeV²) (R \approx 1)
 - At $\sqrt{s} = 3$ TeV for 100 fb⁻¹ ~ 1000 events/(unit of R)
- For Js > 1 TeV
 - Fusion processes important at multi-TeV MC

$$\sigma(s) = C \ln(\frac{s}{M_{\rm X}^2}) + \dots$$

Muon Accelerator Physics Scope

Muon Accelerators

And Potential Staging Steps

Accelerator	Energy	/ Scale	Performance
Cooling Channel	~200	MeV	Emittance Reduction
MICE	160-240	MeV	10%
Muon Storage Ring	3-4	GeV	Useable μ decays/yr*
vSTORM	3.8	GeV	3x10 ¹⁷
Intensity Frontier v Factory	4-10	GeV	Useable μ decays/yr*
FNAL NF Phase I (PX Ph 2)	4-6	GeV	<i>9x10</i> ¹⁹
FNAL NF Phase II (PX Ph 2)	4-6	GeV	1x10 ²¹
IDS-NF Design	10	GeV	5x10 ²⁰
Higgs Factory	~126	GeV CoM	Higgs/yr
s-Channel μ Collider	~126	GeV CoM	5,000-40,000
Energy Frontier μ Collider	> 1	TeV CoM	Avg. Luminosity
Opt. 1	1.5	TeV CoM	1.2x10 ³⁴ cm ⁻² s ⁻¹
Opt. 2	3	TeV CoM	4.4x10 ³⁴ cm ⁻² s ⁻¹
Opt. 3	6	TeV CoM	12x10 ³⁴ cm ⁻² s ⁻¹

Decays of an individual species (ie, $\mu^{\scriptscriptstyle +}$ or $\mu^{\scriptscriptstyle -}$)

Neutrino Factory Concept

IDS-NF:

4 MW Proton Source (eg, Project X Stage IV) with ~2ns long bunches

MAP

Muon Accelerator Staging Study:

Utilize Project X Stage II beam starting at 1MW

v Factory Goal: O(10²¹) μ/year within the accelerator acceptance **IDS-NF**:

10 GeV Ring pointed at a magnetized detector @2500km

MAP

Muon Accelerator Staging Study: Studying a ~5GeV ring delivering vs to Homestake

Muon Collider Concept

Muon Collider Block Diagram

Proton source:
For example PROJECT X
Stage IV at 4 MW, with
2±1 ns long bunches

Goal:

Produce a high intensity μ beam whose 6D phase space is reduced by a factor of ~10⁶-10⁷ from its value at the production target

Collider: $\sqrt{s} = 3$ TeV Circumference 4.5km $L = 3 \times 10^{34}$ cm⁻²s⁻¹ μ /bunch = 2x10¹² $\sigma(p)/p = 0.1\%$ $\varepsilon_{\perp N} = 25 \ \mu m, \ \varepsilon_{//N} = 72 \ mm$ $\beta^* = 5 mm$ Rep. Rate = 12 Hz

April 17, 2013 **Fermilab**

THE R&D CHALLENGES

Technology Challenges – Tertiary Production

A multi-MW proton source, e.g., Project X, will enable
O(10²¹) muons/year to be produced, bunched and cooled to
fit within the acceptance of an accelerator.

Technology Challenges - Target

Arogram

- The MERIT Experiment at the CERN PS
 - Proof-of-principle demonstration of a liquid Hg jet target in high-field solenoid in Fall `07
 - Demonstrated a 20m/s liquid Hg jet injected into a 15 T solenoid and hit with a 115 KJ/pulse beam!
 - Technology OK for beam powers up to 8 MW with a repetition rate of 70 Hz!

Hg jet in a 15 T solenoid with measured disruption length ~ 28 cm

Technology Challenges – Capture Solenoid

- A Neutrino Factory and/or Muon Collider Facility requires challenging magnet design in several areas:
 - Target Capture Solenoid (15-20T with large aperture)

O(10MW) resistive coil in high radiation environment

Possible application for High Temperature Superconducting magnet technology

Ionization Cooling

Muons cool via dE/dx in low-Z medium

- RF cavities between absorbers replace ΔE
- Net effect: reduction in p_{\perp} at constant p_{\parallel} , i.e., transverse cooling

$$\frac{d\epsilon_N}{ds} \approx -\frac{1}{\beta^2} \left\langle \frac{dE_\mu}{ds} \right\rangle \frac{\epsilon_N}{E_\mu} + \frac{\beta_\perp (0.014 \text{ GeV})^2}{2\beta^3 E_\mu m_\mu X_0}$$
 (emittance change per unit length)

- ionization minimum is ≈ optimal working point:
 - ▶ longitudinal +ive feedback at lower p
 - straggling & expense of reacceleration at higher p
- 2 competing effects ⇒ ∃ equilibrium emittance

Muon Ionization Cooling Experiment (MICE)

- Tertiary production of muon beams
 - Initial beam emittance intrinsically large
- Muon Cooling ⇒ Ionization Cooling
 - dE/dx energy loss in materials
 - RF to replace p_{long}

Recent Technology Highlights

Successful Operation of 805 MHz "All Seasons" Cavity in 3T Magnetic Field under Vacuum

MuCool Test Area/Muons Inc

Breakthrough in HTS Cable Performance with Cables Matching Strand Performance

FNAL-Tech Div
T. Shen-Early Career Award

The Path to a Viable Cooling Channel Cooling

Demonstration of High Pressure RF Cavity in 3T Magnetic Field with Beam

Extrapolates to μ-Collider Parameters

MuCool Test Area

World Record HTS-only Coil

15T on-axis field 16T on coil

PBL/BNL

April 17, 2013 **Fermilab**

vStorm as an R&D platform

- A high-intensity pulsed muon source
- 100<p_u<300 MeV/c muons
 - Using extracted beam from ring
 - -10^{10} muons per 1 µsec pulse
- Beam available simultaneously with physics operation
 - Sterile v search
 - v cross section measurements needed for ultimate precision in long baseline measurements
- vSTORM also presents the opportunity to design, build and test decay ring instrumentation (BCT, momentum spectrometer, polarimeter) to measure and characterize the circulating muon flux.

More on this in a moment...

MAP Feasibility Assessment Goals

Within the 6-year time frame:

 To deliver results that will permit the high-energy physics community to make an informed choice of the optimal path to a high-energy lepton collider and/or a next-generation neutrino beam facility

As well as...

23

- To explore the path towards a facility that can provide cutting edge performance at both the Intensity Frontier and the Energy Frontier
- To validate the concepts that would enable the Fermilab accelerator complex to support these goals

MUON ACCELERATOR STAGING

Muon Collider - Neutrino Factory

Comparison NEUTRINO FACTORY

v Factory Goal: O(10²¹) μ/year within the accelerator acceptance

Share same complex

MUON COLLIDER

A Staged Muon-Based Neutrino and Collider Physics Program

The plan is conceived in four stages, whose exact order remains to be worked out:

- The "entry point" for the plan is the vSTORM facility proposed at Fermilab, which can advance short-baseline physics by making definitive observations or exclusions of sterile neutrinos. Secondly, it can make key measurements to reduce systematic uncertainties in long-baseline neutrino experiments. Finally, it can serve as an R&D platform for demonstration of accelerator capabilities pre-requisite to the later stages.
- A stored-muon-beam Neutrino Factory can take advantage of the large value of θ₁₃ recently measured in reactor-antineutrino experiments to make definitive measurements of neutrino oscillations and their possible violation of CP symmetry.
- Thanks to suppression of radiative effects by the muon mass and the m_{lepton}^2 proportionality of the s-channel Higgs coupling, a "Higgs Factory" Muon Collider can make uniquely precise measurements of the 126 GeV boson recently discovered at the LHC.
- An energy-frontier Muon Collider can perform unique measurements of Terascale physics, offering both precision and discovery reach.

All proposed muon-based accelerators would easily fit at Fermilab

vSTORM (entry level Neutrino Factory)

Intensity Frontier Neutrino Factory

vSTORM would provide important physics output and critical R&D leverage

Also a muon-based Higgs Factory or Energy Frontier Muon Collider III April 17, 2013 Fermilab

How Could the Staged NF to Homestake Perform?

What if we send beam to LBNE?

- 1 MW, no muon cooling
- ⇒ 3 MW, w/cooling
- ⇒ 4 MW, w/cooling

What if we were able to have a magnetized LAr detector?

Gray bands represent range of possible detector performance per arXiv:0805.2019

Plots courtesy of P. Huber

Plots assume 100 kt-years

Updated 63 x 63 GeV Lattice

۰.	ra	-	~	

raidifietei			
Beam energy	GeV	63	63
Average luminosity	10 ³¹ /cm ² /s	1.7	8.0
Collision energy spread	MeV	3	4
Circumference, C	m	300	300
Number of IPs	-	1	1
β*	cm	3.3	1.7
Number of muons / bunch	1012	2	4
Number of bunches / beam	-	1	1
Beam energy spread	%	0.003	0.004
Normalized emittance, $\epsilon_{\perp N}$	π·mm-rad	0.4	0.2
Longitudinal emittance, $\epsilon_{\parallel N}$	π·mm	1.0	1.5
Bunch length, $\sigma_{\rm s}$	cm	5.6	6.3
Beam size at IP, r.m.s.	mm	0.15	0.075
Beam size in IR quads, r.m.s.	cm	4	4
Beam-beam parameter	-	0.005	0.02
Repetition rate	Hz	30	15
Proton driver power	MW	4	4

126 GeV Higgs Factory

s-channel coupling of Muons to HIGGS with high cross sections:

Muon Collider of with L = 10³² cm⁻²s⁻¹ @ 63 GeV/beam (50000 Higgs/year)

Competitive with e+/e- Linear Collider with L = 2. 10³⁴ cm⁻²s⁻¹ @ 126 GeV/beam

Sharp resonance: momentum spread of a few × 10⁻⁵

Precision
energy
measurement
provided by
g-2 effect and
residual
polarization in
muon beams

Major advantage for Physics of a $\mu^+\mu^-$ Higgs Factory: possibility of direct measurement of the Higgs boson width (Γ ~4MeV FWHM expected) 30 BNL Snowmass `13 Frontier Facilities Meeting

Reduced cooling: $\epsilon_{\perp N} = 0.3\pi \cdot mm \cdot rad, \\ \epsilon_{\parallel N} = 1\pi \cdot mm \cdot rad$

Multi-TeV Collider – 1.5 TeV

Arogram

Y. Alexahin

Baseline

Larger chromatic function (Wy) is corrected first with a single sextupole S1, Wx is corrected with two sextupoles S2, S4 separated by 180° phase advance.

Parameter	Unit	Value
Beam energy	TeV	0.75
Repetition rate	Hz	15
Average luminosity / IP	10 ³⁴ /cm ² /s	1.1
Number of IPs, N _{IP}	-	2
Circumference, C	km	2.73
β*	cm	1 (0.5-2)
Momentum compaction, α_{p}	10-5	-1.3
Normalized r.m.s. emittance, $\epsilon_{\perp N}$	$\pi{\cdot}mm{\cdot}mrad$	25
Momentum spread, $\sigma_{\rm p}/{ m p}$	%	0.1
Bunch length, $\sigma_{\rm s}$	cm	1
Number of muons / bunch	1012	2
Number of bunches / beam	-	1
Beam-beam parameter / IP, ξ	-	0.09
RF voltage at 800 MHz	MV	16

Muon Accelerator Staging

Accelerator	Energy	y Scale	Performance	
Cooling Channel	~200	MeV	Emittance Reduction	
MICE	160-240	MeV	10%	4
Muon Storage Ring	3-4	GeV	Useable μ decays/yr*	\$
vSTORM	3.8	GeV	$3x10^{17}$	
Intensity Frontier v Factory	4-10	GeV	Useable μ decays/yr*	¢
FNAL NF Phase I (PX Ph 2)	4-6	GeV	<i>9x10</i> ¹⁹	1
FNAL NF Phase II (PX Ph 2)	4-6	GeV	$1x10^{21}$,
IDS-NF Design	10	GeV	5x10 ²⁰	1
Higgs Factory	~126	GeV CoM	Higgs/yr	
s-Channel μ Collider	~126	GeV CoM	5,000-40,000	1
Energy Frontier μ Collider	> 1	TeV CoM	Avg. Luminosity	
Opt. 1	1.5	TeV CoM	1.2x10 ³⁴ cm ⁻² s ⁻¹	
Opt. 2	3	TeV CoM	4.4x10 ³⁴ cm ⁻² s ⁻¹	,
Opt. 3	6	TeV CoM	12x10 ³⁴ cm ⁻² s ⁻¹	

Decays of an individual species (ie, μ^+ or μ^-)

The Muon Accelerator Program Timeline

Neutrino Factory Staging (MASS)

		System	Parameters	Unit	NuSTORM	LONE	NF	IDS-NF
on (Performance	stored μ+ or μ-/year		8×10 ¹⁷	2×10 ²⁰	1.25×10 ²¹	1×10 ²¹
Based			v_e or v_μ^* to detectors/yr		3×10 ¹⁷	9.4×10 ¹⁹	5.6×10 ²⁰	5×10 ²⁰
\sim	2		Far Detector	Type		Mag LAr	Mag LAr	Super-Bind
ш '			Distance from ring	km	1.5	1300	1300	2000
	(1)	ō	Mass	kT	1.3	10	30?	100
$\overline{\omega}$	S	ščt	magnetic field	T	2	0.5?	0.5?	1>2 ?
	ā	Detector	Near Detector	Type	Liquid Ar	Liquid Ar	Liquid Ar	Liquid Ar
Plan	hase	ā	Distance from ring	<u>m</u>	50	100	100	100
	<u>n</u>		Mass	kT	0.1	1	2.7	2.7
	_		magnetic field	Т	No	No	No	No
Staging	×	Neutrino Ring	Ring Momentum P _μ	GeV/c	3.8	4	4	10
ත ්			Circumference C	m	350	1190	1190	1190
് ത	7		Straight section Length	m	150	470	470	470
1	a	Z	Arc Length	m	25	125	125	125
(\mathcal{O})	Project	_	Initial Momentum	GeV/c	3.8	0.22	0.22	0.22
	0	Acceleration	single pass Linac	GeV	None	0.9	0.9	0.9
€,		rati	4.5-pass RLA	GeV	None	4	4	4
の		<u> </u>	NS-FFAG Ring	GeV	None	None	None	10
		Ce	SRF frequency	MHz	None	201	201	201
		¥	Number of cavities		None 50	50 + 26 550	50 + 26 550	50 + 26 + 25
		•	Total Arc Length	m				550 +200
		Cooling	•		No	No	4D	4D
Preliminary		Proton Source	Proton Beam Power	MW	0.2	1	3	4
			Proton Beam Energy	GeV	60	3	3	10
			protons/year	1×10 ²¹	0.2	41	125	25
			Repetition Frequency	Hz	1.25	70	70	50

MAP Designs for a Muon-Based Higgs Factory and Energy Frontier Collider

Muon Collider Baseline Parameters

/	<u>Higgs</u>			actory	<u> Multi-TeV</u>	<u>Baselines</u>
ing or				Upgraded		
			Initial	Cooling /		
ilab Site	Parameter	Units	Cooling	Combiner		
	CoM Energy	TeV	0.126	0.126	1.5	3.0
	Avg. Luminosity	10 ³⁴ cm ⁻² s ⁻¹	0.0017	0.008	1.25	4.4
Beam Energy Spread		%	0.003	0.004	0.1	0.1
Circumference		km	0.3	0.3	2.5	4.5
No. of IPs			1	1	2	2
Repetition Rate		Hz	30	15	15	12
	β*	cm	3.3	1.7	1 (0.5-2)	0.5 (0.3-3)
N	lo. muons/bunch	10 ¹²	2	4	2	2
No. bunches/beam			1	1	1	1
Norm. Trans. Emittance, ϵ_{TN}		mm-rad	0.4	0.2	0.025	0.025
Norm. Long. Emittance, $\epsilon_{\scriptscriptstyle LN}$		mm-rad	1	1.5	70	70
Bunch Length, σ_{s}		cm	5.6	6.3	1	0.5
Beam Size @ IP		μm	150	75	6	3
Beam-	-beam Parameter / IP		0.005	0.02	0.09	0.09
Pro	oton Driver Power	MW	4 [#]	4	4	4

Exquisite Energy Resolution **Allows Direct** Measurement of Higgs Width

Site Radiation mitigation with depth and lattice design: ≤ 10 TeV

^{*}Could begin operation at lower beam power (eg, with Project X Phase 2 beam)

Concluding Remarks...

- The unique feature of muon accelerators is the ability to provide cutting edge performance on both the Intensity and Energy Frontiers
 - This is well-matched to the direction specified by the P5 panel for Fermilab
 - The possibilities for a staged approach make this particularly appealing in a time of constrained budgets
 - vSTORM would represent a critical first step in providing a muon-based accelerator complex
- World leading Intensity Frontier performance could be provided with a Neutrino Factory based on Project X Phase II
 - This would also provide the necessary foundation for a return to the Energy Frontier with a muon collider on U.S. soil
- A Muon Collider Higgs Factory
 - Would provide exquisite energy resolution to directly measure the width of the Higgs. This capability would be of crucial importance in the MSSM doublet scenario.

multi-TeV Energy Frontier machine?